Pushpraj Gupta

Tuesday, December 25, 2018

LCM and HCF

LCM and HCF 

Factor:- Factor is a number which exactly divides the another  number.
             As 2,5 are factor of 10.
Multiple:- A number is said to be multiple of another number, when it is exactly 
                divisible by other number. 
             As  10 is multiple of 2,5.
LCM :- Least common multiple is a number which is smallest multiple of two or more 
              than two  numbers. 
For example:- The common multiples of 3 and 4 are 12,24,36 and so on and
                        the least (smallest)  multiple is 12.Hence LCM of 3 and 4 is 12.
 For example:- The multiples of 4 are
                               4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, . . .
                            The multiples of 6 are
                   6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, . . .
                           The common multiples of 4 and 6 are
                 12, 24, 36, 48, . . .
                          The Least Common Multiples of 4 and 6 is 12

                  LCM(4, 6) = 12
Methods to find LCM
(1) Prime factorization method
      (i) Express the given number s product of prime numbers.
      (ii) Find each prime factor and their highest index.
      (iii) The product of all prime factor with highest index is LCM of given numbers.
Example:-LCM of  12,14,16,18.
                 12=22*3
                 14=2*7
                 16=24
                 18=2*32
                     LCM=24*32*7=1008
(2) Division Method
      (i) Draw a table as shown in below.
      (ii) Divides the numbers with their common factors.
      (iii)  Divides till the numbers have no common factors.
      (iv) At last multiply common factor and last line quotients.
Example:-LCM of  12,14,16,18.
        
2
12
14
16
18
2
6
7
8
9
3
3
7
4
9

1
7
4
3

LCM=2*2*3*1*7*4*3=1008
HCF & GCD :- Highest common factor is the greatest divisor of  two or more than two numbers. 
For example:- The common divisors  of  8 and 12 are 1,2,4. and the greatest common
                        divisor is 4.
For example:- The factors of 24 are
            1, 2, 3, 4, 6, 8, 12, 24
           The factors of 36 are
           1, 2, 3, 4, 6, 9, 12, 18, 36
           The common factors of 24 and 36 are
           1, 2, 3, 4, 6, 12
           The Greatest  Common Divisor of 24 and 36 is 12
           GCD(24, 36) = 12
Methods to find HCF

(1) Prime factorization method
     (i) Express the given number s product of prime numbers.
     (ii) Find each prime factor and their lowest index.
     (iii) The product of all prime factor with lowest index is HCF of given numbers.
Example:-HCF of  12,16,  
                 12=22*3
                 16=24
                 HCF=22*30=4. 
(2) Division method
     (i) Divide the largest given number by second numbers.
     (ii) Divide the second number by above remainder of (i).
     (iii) Divide the remainder of (i) by  remainder of (ii).Continue the process
            till the remainder is not  zero
Example:-HCF of  12,16,   
                       12⎾16⏋1
                                 12
                                 __
                                  4⎾12⏋3
                                        12
                                        __
                                          0
      HCF=4.
        
Some Important Formula :-
(1)  Product of two numbers = Their HCF. * Their LCM
(2)   HCF of given fractions = HCF of  numerators / LCM of Denominators   
(3)   LCM of given fractions =LCM of  numerators / HCF of Denominators  
Some Important Results:-
(1)  Largest number which divides x,y,z to leave same remainder = HCF of y-x, z-y, z-x.
(2)  Largest number which divides x,y,z to leave same remainder 
      R =HCF of x-R, y-R, z-R.
(3)  Largest number which divides x,y,z to leave same remainder a,b,c 
       =HCF of x-a, y-b, z-c.
(4)   Least number which when divided by x,y,z and leaves a remainder R in each case
        = ( LCM of  x,y,z) + R
Example 1:-Find the HCF and LCM of the numbers 60 and 72.
                    write each number as a product of its prime factors.
Explanation. Now  60 = 2 * 2 * 3 * 5= 22*3 * 5
             72 = 2 * 2 *2* 3*3 = 23*32
                 HCF=22*31=12.
               LCM=23*32* 5=360.
Example 2:-Find the LCM of 2/3 and 4/6.
Explanation. LCM of 2 and 4 is 4.
                  HCF of 3 and 6 is 3.
                     Formula 
                     LCM of given fractions =LCM of  numerators / HCF of Denominators.
                     Hence  LCM of 2/3 and 4/6 is 4/3.
                     Ans is 4/3.
Example 3:- Least number which when divided by 35,45,55 and leaves remainder
                  18,28,38; is?
Explanation. Here  the difference   35-18=17,45-28=17 55-38=17
                  Here the difference between every divisor and remainder is same i.e. 17.
                  Therefore, required number = LCM of (35,45,55)-17 =3465-17= 3448.
Example 4:-Find the least number which when divided by 5,7,9 and 12, leaves the 
                     same remainder 3 in each case.
 Explanation. In these type of questions, we need to find the LCM of the divisors and
                      add the common remainder (3) to it.
                      So, LCM (5, 7, 9, 12) = 1260
                      Therefore, required number = 1260 + 3 = 1263
Example 5:-The LCM and HCF of two positive numbers are 300 and 30 respectively.
                      If one number is  60.Find the other number.
Explanation.  Formula
                      Product of two numbers = Their HCF. * Their LCM
                      60 * Other number =30*300
                      Other number = 30*300/60 =150.
                     Ans is 150.
Example 6:-Two numbers are in the ratio of 5:11. If their HCF is 7, find the numbers and 
                      their LCM.
 Explanation.  Let the numbers be 5k and 11k. Since 5:11 is already the reduced ratio,
                      since they have no   common factor hence ‘k’ has to be the HCF.  
                      So, the numbers are 5 x 7 = 35 and 11 x 7 = 77.
                      LCM = 35*77/7 = 385.
Example 7:-Two numbers are in the ratio 2:3. If the product of their LCM and HCF is 294, 
                      find the numbers.
 Explanation.Let the common ratio be ‘k’. So, the numbers are 2k and 3k.
                       Formula
                       Product of two numbers = Their HCF. * Their LCM
                        2k x 3k = 294
                        k2 = 49
                        k = 7

                      LCM = 35*77/7 = 385.

Example 8:-Find the LCM and HCF of 0.70,1.75 and 5.6.
Explanation. The given numbers can be written as 0.70,1.75 and 5.60
                      Without decimal pint numbers are 70,175 and 560
                      LCM of 70,175 and 560 is 1400.
                      Hence LCM of  0.70,1.75 and 5.6 is 14
                      HCF of 70,175 and 560 is 35.
                      Hence  HCF of  0.70,1.75 and 5.6 is 0.35
Example 9:-Find the greatest number which on dividing 70 and 50 leaves remainders 
                      1 and 4 respectively.
Explanation.The required number leaves remainders 1 and 4 on dividing 70 and 50
                            respectively.
                      This means that the number exactly divides 69 and 46.
                      So, we need to find the HCF of 69  and 46.
                      HCF of 69  and 46 is 23
                     Ans  is 23.
Example 10:-Find Least number which when divided by 5,6,7,8 and leaves remainder 3,
                       but when divided  by 9, leaves no remainder.
Explanation. LCM of 5,6,7,8 = 840
                       Required number = 840 k + 3
                       Least value of k for which (840 k + 3) is divided by 9 is 2
                       Therefore, required number = 840*2 + 3
                                            = 1683

No comments:

Post a Comment